一项针对东京都多摩地区57处饮用水井的水质调查显示,其中10处的致癌物质浓度超标。调查报告称,10处水井中检测出的致癌物质为全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA),全氟辛烷磺酸有什么危害呢?

全氟辛烷磺酸有什么危害

一、持久性

全氟辛烷磺酸的持久性极强,是最难分解的有机污染物,在浓硫酸中煮一小时也不分解。据有关研究,在各种温度和酸碱度下,对全氟辛烷磺酸进行水解作用,均没有发现有明显的降解;PFOS在增氧和无氧环境都具有很好的稳定性,采用各种微生物和条件进行的大量研究表明,PFOS没有发生任何降解的迹象。唯一出现PFOS分解的情况,是在高温条件下进行的焚烧。

PFOS钾盐经过49天50 ºC温度条件的水解,测试出的pH值范围在1.5-11之间。PFOS物质没有发生降解,根据这些结果,可以算出PFOS钾盐在25 ºC温度条件的半衰期为> 41年。

二、生物累积性

试验研究表明,PFOS可以在有机生物体内聚积。已有诸多证据表明,水生食物链生物对PFOS有较强的富积作用。鱼类对PFOS的浓缩倍数为500-12000倍。研究发现,彩虹鲑鱼在受到相关浓度的PFOS影响后,其肝脏和血清中表现出的生物累积系数分别为2900和3100。水中的PFOS通过水生生物的富积作用和食物链向包括人类在内的高位生物转移。

目前,在高等动物体内已发现了高浓度PFOS的存在,且生物体内的蓄积水平高于已知的有机氯农药和二口恶英等持久性有机污染物的数百倍至数千倍,成为继多氯联苯、有机氯农药和二口恶英之后,一种新的持久性的环境污染物。对各地的主要食肉动物的数据的监测表明,全氟辛烷磺酸的含量很高,表明全氟辛烷磺酸具有很高的生物累积和生物放大的特性。

各种哺乳动物、鸟类和鱼类的生物放大系数在两个营养层次之间从22-160不等。在北极熊肝脏里测量到的全氟辛烷磺酸的浓度超过了所有其他已知的各种有机卤素的浓度。

与许多持久性有机污染物的通常情况相反,全氟辛烷磺酸在脂肪组织中不会累积起来。这是因为全氟辛烷磺酸既具有疏水性,又具有疏脂性。相反,全氟辛烷磺酸依附于血液和肝脏中的蛋白质。

据EPA、欧洲、日本及我国研究机构的研究结果表明:PFOS及其衍生物通过呼吸道吸入和饮用水、食物的摄入等途径,而很难被生物体排出,尤其最终富集于人体、生物体中的血、肝、肾、脑中。

三、毒性

有关专家对PFOS的毒性研究发现,PFOS具有肝脏毒性,影响脂肪代谢;使实验动物精子数减少、畸形精子数增加;引起机体多个脏器器官内的过氧化产物增加,造成氧化损伤,直接或间接地损害遗传物质,引发肿瘤。

PFOS破坏中枢神经系统内兴奋性和抑制性氨基酸水平的平衡,使动物更容易兴奋和激怒;延迟幼龄动物的生长发育,影响记忆和条件反射弧的建立;降低血清中甲状腺激素水平。大量的调查研究发现,PFOS具有遗传毒性、雄性生殖毒性、神经毒性、发育毒性和内分泌干扰作用等多种毒性,被认为是一类具有全身多器脏毒性的环境污染物。

四、远距离环境迁移的能力

全氟辛烷磺酸钾盐的已知蒸汽压力为3.31 × 10-4帕。由于这种蒸汽压力和较低的空气-水分离系数, 全氟辛烷磺酸本身不会大量挥发。由于全氟辛烷磺酸具有表面活性,因此假定可以在主要限于粒子的大气中迁移。鉴于全氟辛烷磺酸在所有已进行的测试中体现出极强的抗降解性,预计这种物质的大气半衰期超过两天。全氟辛烷磺酸的间接光解半衰期估计超过3.7年。

PFOS具有远距离环境传输的能力,污染范围十分广泛。据有关资料表明,全世界范围内被调查的地下水、地表水和海水,甚至连人迹罕至的北极地区,生态环境样品、野生动物和人体内无一例外的存在PFOS的污染踪迹。

基于PFOS物质具有持久性、高度生物累积性、有毒以及可以远距离环境迁移的特点,符合斯德哥尔摩公约关于持久性有机污染物定义特征,被普遍认为是符合国际PoPs公约组织所定义的持久性有机污染物(简称POP)、持久累积毒性物(简称PBT)类物质,因而引起了更加广泛的关注,全球限用PFOS及其衍生物的呼声越来越高。

瑞典政府认为,带有PFOS特性的物质一旦进入环境,将持久存在并对生物体健康构成长期威胁,应当限制其使用。G/TBT/N/SWE/51通告的发布,使得瑞典成为全球第一个对PFOS说“不”的国家。

标签:磺酸 具有 生物 毒性 持久