美国国家航空航天局与欧洲航天局合作的太阳探测器Solar Orbiter发射升空

美国国家航空航天局与欧洲航天局合作的太阳探测器Solar Orbiter发射升空

美国国家航空航天局与欧洲航天局合作的太阳探测器Solar Orbiter发射升空

美国国家航空航天局与欧洲航天局合作的太阳探测器Solar Orbiter发射升空

美国国家航空航天局与欧洲航天局合作的太阳探测器Solar Orbiter发射升空

据科学大院:喜欢拍照的朋友们都知道,即使对于同样的场景,变换角度拍摄后仍然可能得到效果不同的照片。无论是徘徊在车展上的模特周围,不停的重复蹲下起立的人像摄影师,还是为了记录城市的全景和天际线,不惜混入摩天大楼工地的风光摄影师,对这一点相信都有切身的感受。而对于太阳物理和空间物理学家来说,他们的愿望就是能把太阳的上下左右、里里外外全都看清,好彻底地理解给予我们光和热的这颗恒星。

然而,自古至今,人类观察太阳的视角却始终被局限在地球公转轨道所在的平面上,从未能对太阳的南北两极进行细致的观测。更撩动科学家心弦的是,太阳的南北两极发生的事,对太阳如何影响航天器的飞行乃至我们生存的环境,都有着重要的意义。

美国东部时间2月9日晚上10:30,也就是北京时间2月10日的上午11:30,一位新的太阳摄影师将上线,她的名字叫Solar Orbiter。她将走上一条前辈没没有走过的路,不但能够清晰地看到太阳的南北两极,还能利用手中的十八般兵器,细致入微地看清太阳的每一张面孔。

太阳极区很重要,然而我们一直看不清

欧洲是人类科学认识太阳的起源地。当17世纪伽利略最早将望远镜应用于天文观测时,太阳黑子就是望远镜的重要观测对象。1844年,连续积累18年的太阳黑子群数量记录启发德国天文学家施瓦贝发现了太阳黑子数量的变化规律:在为期11年的周期中,黑子数先增加,之后逐渐减少,最终回到11年周期开始时的水平。

而天文学家沃尔夫对历史数据的回溯,更确切的证明了施瓦贝的结论。

通过不断积累的观测与研究,人们对太阳黑子的出现与变化的规律已经有了更深入的认识。黑子一般成双结对的出现在太阳表面,像一块U型磁铁伸出了太阳表面一样,黑子对中的两个黑子有着不同的磁场极性。在太阳表面流动的作用下,出现在中纬度地区的黑子磁场(更确切的说应该是磁通量,为了避免使读者迷失在繁杂的术语中,以下不做区分)会同时向赤道和两极输运。在赤道附近,从南北两个方向输运来的磁场极性相反,在此同归于尽。而输运向极区的磁场,则能够在清除掉上一个太阳周极区磁场的残余势力后,在此建立一片单一磁场极性的根据地。

磁力线从极区的“根据地”出发后,由于在附近找不到落脚的地方,因此不得不向远离太阳的行星际空间延伸,成为行星际磁场的一部分。开放的行星际磁场为太阳风从太阳表面涌出提供了一条畅通无阻的高速公路,因此单一磁场极性的根据地也是高速太阳风的发源地。在极紫外、软X射线等波段的观测中,极区的磁场“根据地”显示出一片暗黑的颜色,像是在太阳表面附近的低层日冕中开了个大窟窿,因此科学家们形象的将其称之为极区冕洞(polar coronal hole)。

冕洞不只两极有,在低纬度地区也会出现。但是当新太阳黑子出现的数目不断减少,太阳进入11年活动周的极小和下降期时,极区冕洞就是行星际磁场和高速太阳风的主要发源地了。在其他时间里,极区冕洞的消失、重新出现也是决定太阳磁场整体结构的重要过程。和地球的偶极磁场经历极长的时间才会发生方向的翻转所不同的是,由太阳两极的冕洞为根基的太阳偶极磁场,每11年就会翻转一次。

在极区冕洞涌出的高速太阳风,本身就会对地球附近的空间天气状况产生影响。比如,当高速太阳风更频繁的吹袭地球时,国际空间站、天宫空间站这样长期在低地球轨道上工作的航天器就会更快的发生轨道衰减,需要更多的燃料进行轨道维持才能不让他们坠落。而当太空中的台风——日冕物质抛射从太阳上爆发时,极区冕洞所决定的行星际磁场和太阳风整体结构,又是决定它能不能击中地球的重要因素。最严重的日冕物质抛射,不但会让卫星飞船遭殃,更有可能大范围瘫痪高压电网,使人类被迫过一段没电的原始生活——没灯没网没自来水,没有现代生活的一切。

总之,要研究明白太阳上的事情,准确的预报太阳活动对于天上飞的飞船和地上生活的我们产生的空间天气效应并有所准备,需要看清太阳的两极。

遗憾的是,我们一直看不清。

离开那个平面

为什么看不清?我们先从卫星观察地球的例子说起。

下面这种图片是工作的地球静止轨道上的风云4-A卫星拍摄的今年2月4日白天的地球图像,从这幅图中,我们可以清晰的看到包括我国在内的地区,然而对于南北极地区,则只能看清一部分地区的大致轮廓。要清晰对南北极实施观测,卫星不能在赤道上空的静止轨道工作,必须进入倾角比较高的轨道。

当我们把视角由地球附近扩展到整个太阳系时将会看到,包括地球在内的所有行星都集中在太阳赤道附近的平面上。受航天技术的限制,从地球上发射的航天器,即便挣脱地心引力的束缚,大部分也只能在地球公转轨道面附近运行。因此SDO、SOHO等已经在太空中工作的太阳探测器,只能提供地球公转面附近的观测视角,无法特别准确得看到太阳极区的情况。对于设置在地面上的太阳望远镜,情况更是如此。

欧洲和美国合作进行的Ulysses飞船曾经完成了一次地球公转轨道面以外的飞行。在这次飞行中,Ulysses飞船发现在太阳活动的极小期和下降期,源自太阳两极的太阳风具有相当稳定的结构,当Ulysses在其中穿行时几乎感觉不到速度和密度的变化。而当太阳活动进入极大期时,不同速度的太阳风则会像地球公转面附近那样交替出现。如果不飞出地球公转轨道所在的平面,这些关于太阳风的三维结构认知都是无法得到的。

遗憾的是,Ulysses只装备了进行局地探测的仪器,只能感受到她附近的太阳风情况,却无法用遥感成像观测的望远镜看到太阳表面的图像。实际上,即便装了遥感设备,Ulysses也难以看到太阳太清晰的样子:Ulysses与太阳的距离大约在2AU-4AU(AU为天文单位,表示地球到太阳的平均距离)间变化,也就是地球和太阳距离的2-4倍,离得越远,自然也就越难看清楚了。

Solar Obiter:让你一次看个够

这次,SO将一次满足科学家们所有的愿望:靠近太阳,飞出地球公转轨道,用各个波段的遥感观测仪器把太阳极区看通透。

要完成这件事,当然要有特别的轨道。借助金星和地球的引力,SO在发射后将会在飞行中与金星形成轨道共振关系,定期相遇。每相遇一次,就能借助进行的引力拉近与太阳的距离,同时逐渐偏离地球公转轨道面。在最初4年的基本任务阶段,相对太阳赤道面的轨道倾角可以达到17度,已经可以比地球上更清楚的观察到太阳极区。而在之后的扩展任务阶段,轨道面相对于太阳赤道的倾角则可以达到33度,对太阳极区的观测质量将会进一步提高。

当我们将来自太阳的辐射信号进行分解后,就能得到关于太阳不同方面的信息。为了获取尽可能丰富的观测,SO上搭载了多达6台的遥感观测仪器。这其中,在极紫外波段进行观测的EUI仪器可以获取色球、过渡区和低层日冕的情况。虽然这种仪器在以往发射的太阳探测卫星上大都有搭载,冕洞位置和结构的识别就主要依靠这个波段的仪器。但得益于SO独特的观测位置,相信能够对日冕中的精细结构和日冕加热、太阳风加速的重要物理过程带来新的信息。而对于磁场本身的观测,则通过X仪器以可见光的塞曼效应为基本原理进行。通过分析太阳光的偏振状态,就能获取太阳光球磁场的极性和强度。

SO处于一条椭圆形的轨道上,轨道距离太阳最近的距离大约为0.28AU,最远则在1AU附近,相当于在地球公转轨道的里面来回穿行。除了类似于望远镜的可以直接看太阳的遥感观测仪器外,SO还配备了4台局地探测仪器,用以“感受”它所在位置的磁场和等离子体参数。在时而靠近、时而远离太阳的过程中,SO可以记录下这些参数逐渐远离太阳时所发生的变化,让科学家们了解太阳风和日冕物质抛射从太阳到地球的旅程中到底发生了哪些变化——这对准确的空间天气预报同样重要。

2018年8月发射的帕克太阳探测器(PSP),是SO是各有所长的一对搭档:PSP虽然遥感观测仪器没有SO丰富,轨道也基本处在地球公转面以内,但其与太阳的最小距离比SO更小,能够探测到日冕加热和太阳风加速最原始的过程。而SO丰富的遥感观测数据和不同日心距离的局地探测数据,则可以为揭开PSP数据背后的秘密提供丰富的线索。总之,PSP和SO双剑合璧,必然能够笑傲日球层的江湖。

科学不但能满足人类的好奇心,为新技术提供理论源头,更能给予人类免于恐惧的自由。彼时,当人类对太阳的科学认知几乎为零时,不过是自然发生的日食也会给人们带来恐慌,而当现代人对电力、卫星定位、卫星通信、跨洋航班所带来的便利习以为常时,来自太阳的风暴又是对现代生活和航天活动的现实威胁。若未来某天,灾难果真降临,我们能否从容的预知它的发生、为它做好万全的准备,全仰仗我们对太阳和空间天气的科学认识水平。可以期待的是,PSP和SO前所未有的观测位置,将会使我们更理解太阳,我们的母星。

相关报道:奔向太阳美欧太阳轨道飞行器发射升空

据威锋网:美国东部时间2020年2月9日,在两个小时内的宝贵发射窗口(晚上11:03打开),一个两吨重的航天器从卡纳维拉尔角(Cape Canaveral)搭载Atlas V火箭发射升空,奔向太阳。这是太阳轨道飞行器Solar Orbiter,由美国国家航空航天局(NASA)与欧洲航天局(ESA)合资打造,造价达数亿美元,该航天器旨在来到太阳两极,观察两极变化,用十年时来研究太阳奥秘。

通过观察两极,科学家们也许可以了解为什么太阳在最大和最小活动期之间有大约11年的太阳周期。观察结果有可能解释某些太阳活动的关键信息,比如太阳耀斑爆发、太阳风、太阳磁场和被称为太阳“极地王冠”的日珥,帮助人类更好的了解这颗恒星,同时了解它将如何影响太阳系。

过去唯一飞跃太阳两极的航天器是1990年发射的尤利西斯探测器(Ulysses)。它在2009年退役之前绕着太阳飞行了三圈,离太阳最近时为1.93亿公里,对太阳表面一览无余,为研究人员提供了大量关于太阳磁场以及太阳表面活动情况的新信息。

而2018年8月发射的帕克号太阳探测器,是目前最接近太阳的人造物,它在2018年11月完成了第一次轨道运行,以时速21.4万英里的速度掠过太阳,距离太阳表面和日冕不足1500万英里。

现在,太阳轨道飞行器Solar Orbiter将通过水星轨道,在距太阳仅4200万公里的地方尽可能近的飞行。

想要近距离接近太阳又不使仪器融化,Solar Orbiter需要承受比地球轨道发现的温度高13倍的极高温度和日照。因此该探测器身上除了多种探测仪器,还配备了先进隔热罩,包括能反射热量的铝箔,铝箔能保护航天器以及25厘米间隙将多余热量散发到太空中。

为了自身凉爽,太阳轨道飞行器的隔热罩会始终面向太阳,以便航天器可以在阴影中运行。太阳轨道飞行器中的10台科学仪器将用于收集来自太阳的带电粒子流,太阳的磁环境以及诸如辐射等性质的信息。

按计划,Solar Orbiter将在今年6月份抵达第1个近日点,距离约为7500万公里,大约为一个天文单位一半,预计在2022年10月抵达另一个近日点,距离约4500万公里,2025年3月,将穿越太阳来自另一个极点。

相关报道:欧洲航天局将发射太阳轨道探测器:或揭开太阳神秘面纱

据快科技:欧洲航天局将于本周日从佛罗里达州卡纳维拉尔角发射太阳轨道探测器。报道中指出,该飞行器是与美国宇航局联合开发的,预计将为科学家带前所未有的来有关太阳大气、风以及磁场的信息。同时,它还将首次获得一些恒星的未知极地的图像。

据悉,在经过金星和水星的飞行后,这颗探测器将达到245000公里/小时的最高速度,并在离太阳表面4200万英里的轨道上运行。该探测器上装有10台最先进的仪器,用来记录观测结果,科学家们希望这些观测数据能够为太阳风和耀斑的形成带来一些线索。

任务负责人安妮·帕克罗斯(Anne Pacros)说:“这项实验的目的是了解太阳是如何创造和控制日光层(太阳结构中大气稀薄的最外层,这一层充满太阳风等离子体)的。”

太阳风和耀斑释放出数十亿的高电荷粒子,这些粒子会撞击包括地球在内的行星。但是,尽管进行了几十年的研究,科学家们对这些现象仍然知之甚少。

据了解,该任务将于当地时间周日23:00在肯尼迪航天中心发射,预计将持续9年,耗资约15亿欧元。

标签:太阳 轨道 地球 观测 磁场